\(\int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [718]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 454 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (8 a^4 C+21 b^4 (9 A+7 C)+3 a^2 b^2 (21 A+11 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{315 b^4 d}-\frac {2 (a-b) \sqrt {a+b} \left (8 a^3 C+6 a^2 b C-21 b^3 (9 A+7 C)+3 a b^2 (21 A+13 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{315 b^3 d}+\frac {2 a \left (63 A b^2+8 a^2 C+39 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{315 b^2 d}+\frac {2 \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{315 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{63 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d} \]

[Out]

-2/315*(a-b)*(8*a^4*C+21*b^4*(9*A+7*C)+3*a^2*b^2*(21*A+11*C))*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b
)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d-
2/315*(a-b)*(8*a^3*C+6*a^2*b*C-21*b^3*(9*A+7*C)+3*a*b^2*(21*A+13*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/
2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)
/b^3/d+2/315*(8*C*a^2+7*b^2*(9*A+7*C))*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/b^2/d-8/63*a*C*(a+b*sec(d*x+c))^(5/2)
*tan(d*x+c)/b^2/d+2/9*C*sec(d*x+c)*(a+b*sec(d*x+c))^(5/2)*tan(d*x+c)/b/d+2/315*a*(63*A*b^2+8*C*a^2+39*C*b^2)*(
a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d

Rubi [A] (verified)

Time = 1.23 (sec) , antiderivative size = 454, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4178, 4167, 4087, 4090, 3917, 4089} \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{315 b^2 d}+\frac {2 a \left (8 a^2 C+63 A b^2+39 b^2 C\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{315 b^2 d}-\frac {2 (a-b) \sqrt {a+b} \left (8 a^4 C+3 a^2 b^2 (21 A+11 C)+21 b^4 (9 A+7 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{315 b^4 d}-\frac {2 (a-b) \sqrt {a+b} \left (8 a^3 C+6 a^2 b C+3 a b^2 (21 A+13 C)-21 b^3 (9 A+7 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{315 b^3 d}-\frac {8 a C \tan (c+d x) (a+b \sec (c+d x))^{5/2}}{63 b^2 d}+\frac {2 C \tan (c+d x) \sec (c+d x) (a+b \sec (c+d x))^{5/2}}{9 b d} \]

[In]

Int[Sec[c + d*x]^2*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(8*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cot[c + d*x]*EllipticE[ArcSin
[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + S
ec[c + d*x]))/(a - b))])/(315*b^4*d) - (2*(a - b)*Sqrt[a + b]*(8*a^3*C + 6*a^2*b*C - 21*b^3*(9*A + 7*C) + 3*a*
b^2*(21*A + 13*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[
(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(315*b^3*d) + (2*a*(63*A*b^2 + 8*a^2*
C + 39*b^2*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(315*b^2*d) + (2*(8*a^2*C + 7*b^2*(9*A + 7*C))*(a + b*Sec
[c + d*x])^(3/2)*Tan[c + d*x])/(315*b^2*d) - (8*a*C*(a + b*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(63*b^2*d) + (2*C
*Sec[c + d*x]*(a + b*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(9*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4087

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4178

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))
^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dis
t[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2) + A*(m + 3))*Csc[e + f*x] - 2
*a*C*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d}+\frac {2 \int \sec (c+d x) (a+b \sec (c+d x))^{3/2} \left (a C+\frac {1}{2} b (9 A+7 C) \sec (c+d x)-2 a C \sec ^2(c+d x)\right ) \, dx}{9 b} \\ & = -\frac {8 a C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{63 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d}+\frac {4 \int \sec (c+d x) (a+b \sec (c+d x))^{3/2} \left (-\frac {3}{2} a b C+\frac {1}{4} \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) \sec (c+d x)\right ) \, dx}{63 b^2} \\ & = \frac {2 \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{315 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{63 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d}+\frac {8 \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (\frac {3}{8} b \left (63 A b^2-2 a^2 C+49 b^2 C\right )+\frac {3}{8} a \left (63 A b^2+8 a^2 C+39 b^2 C\right ) \sec (c+d x)\right ) \, dx}{315 b^2} \\ & = \frac {2 a \left (63 A b^2+8 a^2 C+39 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{315 b^2 d}+\frac {2 \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{315 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{63 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d}+\frac {16 \int \frac {\sec (c+d x) \left (\frac {3}{8} a b \left (126 A b^2+\left (a^2+93 b^2\right ) C\right )+\frac {3}{16} \left (8 a^4 C+21 b^4 (9 A+7 C)+3 a^2 b^2 (21 A+11 C)\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{945 b^2} \\ & = \frac {2 a \left (63 A b^2+8 a^2 C+39 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{315 b^2 d}+\frac {2 \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{315 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{63 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d}+\frac {\left (8 a^4 C+21 b^4 (9 A+7 C)+3 a^2 b^2 (21 A+11 C)\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{315 b^2}-\frac {\left ((a-b) \left (8 a^3 C+6 a^2 b C-21 b^3 (9 A+7 C)+3 a b^2 (21 A+13 C)\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{315 b^2} \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (8 a^4 C+21 b^4 (9 A+7 C)+3 a^2 b^2 (21 A+11 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{315 b^4 d}-\frac {2 (a-b) \sqrt {a+b} \left (8 a^3 C+6 a^2 b C-21 b^3 (9 A+7 C)+3 a b^2 (21 A+13 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{315 b^3 d}+\frac {2 a \left (63 A b^2+8 a^2 C+39 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{315 b^2 d}+\frac {2 \left (8 a^2 C+7 b^2 (9 A+7 C)\right ) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{315 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{63 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{9 b d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3711\) vs. \(2(454)=908\).

Time = 29.56 (sec) , antiderivative size = 3711, normalized size of antiderivative = 8.17 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Result too large to show} \]

[In]

Integrate[Sec[c + d*x]^2*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^3*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*((4*(63*a^2*A*b^2 + 189*A*b^4 + 8*a^4*C + 33
*a^2*b^2*C + 147*b^4*C)*Sin[c + d*x])/(315*b^3) + (4*Sec[c + d*x]^2*(63*A*b^2*Sin[c + d*x] + 3*a^2*C*Sin[c + d
*x] + 49*b^2*C*Sin[c + d*x]))/(315*b) + (8*Sec[c + d*x]*(63*a*A*b^2*Sin[c + d*x] - 2*a^3*C*Sin[c + d*x] + 44*a
*b^2*C*Sin[c + d*x]))/(315*b^2) + (40*a*C*Sec[c + d*x]^2*Tan[c + d*x])/63 + (4*b*C*Sec[c + d*x]^3*Tan[c + d*x]
)/9))/(d*(b + a*Cos[c + d*x])*(A + 2*C + A*Cos[2*c + 2*d*x])) - (4*((-2*a^2*A)/(5*Sqrt[b + a*Cos[c + d*x]]*Sqr
t[Sec[c + d*x]]) - (6*A*b^2)/(5*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (22*a^2*C)/(105*Sqrt[b + a*Cos[
c + d*x]]*Sqrt[Sec[c + d*x]]) - (16*a^4*C)/(315*b^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (14*b^2*C)/
(15*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (2*a^3*A*Sqrt[Sec[c + d*x]])/(5*b*Sqrt[b + a*Cos[c + d*x]])
 + (2*a*A*b*Sqrt[Sec[c + d*x]])/(5*Sqrt[b + a*Cos[c + d*x]]) - (16*a^5*C*Sqrt[Sec[c + d*x]])/(315*b^3*Sqrt[b +
 a*Cos[c + d*x]]) - (62*a^3*C*Sqrt[Sec[c + d*x]])/(315*b*Sqrt[b + a*Cos[c + d*x]]) + (26*a*b*C*Sqrt[Sec[c + d*
x]])/(105*Sqrt[b + a*Cos[c + d*x]]) - (2*a^3*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*b*Sqrt[b + a*Cos[c + d*
x]]) - (6*a*A*b*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*Sqrt[b + a*Cos[c + d*x]]) - (16*a^5*C*Cos[2*(c + d*x)]
*Sqrt[Sec[c + d*x]])/(315*b^3*Sqrt[b + a*Cos[c + d*x]]) - (22*a^3*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(105*
b*Sqrt[b + a*Cos[c + d*x]]) - (14*a*b*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(15*Sqrt[b + a*Cos[c + d*x]]))*Sq
rt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*(2*(a + b)*(8*a^4*C + 21
*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((
a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^3*C - 6*a^
2*b*C + 21*b^3*(9*A + 7*C) + 3*a*b^2*(21*A + 13*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 21*b^4*(
9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/
(315*b^3*d*(b + a*Cos[c + d*x])^2*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(7/2)*(
(-2*a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(8*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*
(21*A + 11*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*E
llipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^3*C - 6*a^2*b*C + 21*b^3*(9*A + 7*C) +
3*a*b^2*(21*A + 13*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d
*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A
+ 11*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(315*b^3*(b + a*Cos[c + d*x])
^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(8*a^4
*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d
*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^3*C
 - 6*a^2*b*C + 21*b^3*(9*A + 7*C) + 3*a*b^2*(21*A + 13*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*C
os[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 2
1*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x
)/2]))/(315*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*
(((8*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^
4)/2 + ((a + b)*(8*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1
 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[
c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - (b*(a + b)*(8*a^3*C -
6*a^2*b*C + 21*b^3*(9*A + 7*C) + 3*a*b^2*(21*A + 13*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))
]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin
[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + ((a + b)*(8*a^4*C + 21*b^4*(9*A + 7*C)
+ 3*a^2*b^2*(21*A + 11*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(
a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 +
Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - (b*(a + b)*(8*a^3*C - 6*a^2*b*C +
 21*b^3*(9*A + 7*C) + 3*a*b^2*(21*A + 13*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d
*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*
x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - a*(8*a^4*C + 21
*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (8
*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Ta
n[(c + d*x)/2] + (8*a^4*C + 21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Se
c[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 - (b*(a + b)*(8*a^3*C - 6*a^2*b*C + 21*b^3*(9*A + 7*C) + 3*a*b^2*(21*A + 1
3*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d
*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + ((a + b)*(8*a^4*C +
21*b^4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/
((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[
(c + d*x)/2]^2]))/(315*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (2*(2*(a + b)*(8*a^4*C + 21*b^
4*(9*A + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a +
 b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^3*C - 6*a^2*b
*C + 21*b^3*(9*A + 7*C) + 3*a*b^2*(21*A + 13*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x
])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 21*b^4*(9*A
 + 7*C) + 3*a^2*b^2*(21*A + 11*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(C
os[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(315*b^3*Sqrt[
b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(5219\) vs. \(2(416)=832\).

Time = 34.31 (sec) , antiderivative size = 5220, normalized size of antiderivative = 11.50

method result size
parts \(\text {Expression too large to display}\) \(5220\)
default \(\text {Expression too large to display}\) \(5289\)

[In]

int(sec(d*x+c)^2*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b*sec(d*x + c)^5 + C*a*sec(d*x + c)^4 + A*b*sec(d*x + c)^3 + A*a*sec(d*x + c)^2)*sqrt(b*sec(d*x +
c) + a), x)

Sympy [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)**2*(a+b*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*(a + b*sec(c + d*x))**(3/2)*sec(c + d*x)**2, x)

Maxima [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)

Giac [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

[In]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2))/cos(c + d*x)^2,x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2))/cos(c + d*x)^2, x)